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Abstract. The class of representations of the diffeomorphism group introduced by Borisov 
(1979), based on SL(3, W), is extended to a class based on the universal covering group 
SL(3, R), and is generalised from the one-particle to the N-particle case. Earlier, the 
authors constructed induced representations of a local current group from little group 
representations that factor through the symmetric group SN, which is a discrete group. 
The present class of representations is obtained through an analogous construction, first 
for the continuous group SL(3, R), and then for the semi-direct product group SL(3, W ) N  A 

S N. 

1. Introduction 

The group of diffeomorphisms of R3 occurs naturally in the quantum theory of local 
observables. Let p ( f )  denote the operator describing the averaged particle density at 
a fixed time, where f belongs to Schwartz's space Y of C" functions of rapid decrease 
at infinity. Let J ( g )  similarly describe the particle flux, where g has components in 
9. In a non-relativistic quantum theory, these operators satisfy the equal-time commu- 
tation relations 

where [gl, g21 is the Lie bracket g2 - Vgl -g, Vg2 of the vector fields gl and g2 on 
R3. Thus we have an infinite-dimensional Lie algebra (Dashen and Sharp 1968, Goldin 
and Sharp 1970, Grodnik and Sharp 1970). 

The group associated with this algebra is a semi-direct product Y A X, where Y is 
Schwartz's space taken under addition, and X is the group of C" diffeomorphisms 
of R3 which (with all derivatives) tend rapidly toward the identity mapping at infinity, 
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taken under composition (Goldin 1971). The group law is given by 

( f l ,  4 l I C f 2 ,  4 2 )  = ( f l  +f2  O 41, 4 2  O 41) (4) 

for f1,fzEY and 41, &EX. 
A formalism for describing representations of nuclear spaces, described by Gel’fand 

and Vilenkin (1964), has been useful in studying representations of Y A X  (Goldin 
and Sharp 1970, Goldin 1971, Goldin eta1 1974). A continuous unitaryrepresentation 
of Y is described by a positive, normalised, countably additive measure @ on the 
cT-algebra of cylinder sets in Y’, the continuous dual of Y. To determine a continuous 
unitary representation of Y A X ,  must be quasi-invariant under the action of X in 
Y’. A class of irreducible representations of Y A X is described by a quasi-invariant 
probability measure @ concentrated on a single X-orbit A in Y’, together with a cocyle 
x m  ( F )  defined for F E Y’ and 4 EX. 

The induced representation formalism, introduced by Mackey (1952) for semi- 
direct products of locally compact groups, has been generalised by the authors to the 
group Y A 9% (Goldin et a1 1980). The present paper places the class of representations 
given by Borisov (1979), based on SL(3, R), in the framework of induced representa- 
tions of Y A X .  We also extend this class to include representations based on the 
covering group SL(3, R). These representations are of order 1 in the sense described 
by Vershik et a1 (1975, p 48). The representations considered here correspond to the 
N-particle orbits 

I N 
AN = [ F E 9‘: F = &,, with the xi all distinct , 

i = l  

where 6, EY’ is the evaluation functional (6, , f)  =f(x). The action of 4 E X  on 
F = ELl  6,, is given by 

N 

r = l  
4 * F =  c Sdcx,, .  (6) 

X F ~ = { C $  EX:  4*Fo=Fo}, (7) 

An important role is played by the little group 

for Fo a fixed element of AN.  In the inducing construction, the cocycle x&(F)  is 
determined from a representation of XFo. Because YC,, is not locally compact, our 
procedure for constructing induced representations has been to define a homomorph- 
ism from XFo to a locally compact group G ,  obtaining representations of XFo from 
those of G.  

When G is taken to be the symmetric group S N  (the fundamental group of the 
orbit A N ) ,  with the natural homomorphism from XFo onto SN, a class of induced 
representations results which have been described by the authors (Goldin et a1 1980). 
One-dimensional representations of S N  correspond to indistinguishable particles obey- 
ing Bose or Fermi statistics, while higher-dimensional representations correspond to 
particles obeying parastatistics (Dicke and Goldin 1983). Here the homomorphism 
from XFo to S N  depends only on the value of 4 E X F ~  at N points. More of the 
structure of each diffeomorphism can be utilised by defining homomorphisms which 
depend on derivatives of 4. The simplest such homomorphism in the case N = 1 
maps X F ~  (where FO = 8.J onto R+ (the positive reals under multiplication), by 4 + 
det $Q(XO), with [$+ (XO) ]~~  = ~,&(xo). Representationsof Y A Xinduced byrepresenta- 
tions of R+ were discussed elsewhere by the authors (Goldin er a1 1981). 
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The representations introduced by Borisov correspond to the choices N = 1, 
G = SL(3, R), and the homomorphism q5 + [det62;,(~~)]-”~62;,(~~). The representa- 
tions of SL(3, R) described by Sijacki (1975) can then be used to obtain representations 
of the group of diffeomorphisms of R3. 

In 3: 2 of this paper, we use the condition that the diffeomorphism q5 E X  tends 
toward the identity mapping at infinity to extend Borisov’s representations to a class 
based on SL(3, R). We then introduce needed notation, and describe these rep- 
resentations in the context of induced representations of Y A YL. A physical interpreta- 
tion with respect to particle spin will be described in another paper (Goldin and Sharp 
1983). Borisov’s class of representations is also extended in this section to the case 
N > 1, where indistinguishable as well as distinguishable particles can be described. 
Concluding remarks are contained in S 3. 

2. Induced representations based on SL(3, R) 

We treat first the case of a one-particle orbit Al ={ax: x E R3}. For fixed x, define the 
map h,: X+ SL(3, R) by 

[ h x ( # ) ] j k  = [ d e t ~ t , ( ~ ) I - ” ~ ( a j 4 k ) ( x ) .  (8) 
Restricted to the little group X,= = {q5 : q5 (x) = x}, h, defines a homomorphism from 

X, onto SL(3, R). To obtain a homomorphism from X, to SL(3, W), we use the fact 
that for q5 E X, q5 (x) approaches x as 1x1 + CO, and its derivatives d j 4 k  (x) approach 8 j k .  
Consider a continuous path x r ,  O <  t s 1, with limr+o (xrl = CO and xtZ1  =x.  Then, for 
0 s t s 1, h,,(q5) defines a continuous path in SL(3, W)  from the identity element to 
h,.(q5), Thus hx,(q5) corresponds to an element of SL(3, R). This element of SL(3, R) 
is independent of the path xr that is chosen, for if x, and x: are two distinct paths 
from infinity to x, then h,,(q5) and h,; (q5)  define distinct paths from the identity to 
h,(q5) in SL(3, R). As we continuously deform the path x r  into x:, the path h,,(q5) is 
continuously deformed into h ,; (q5), since all derivatives a,& vary continuously. Thus 
the paths in SL(3, R) are homotopic, and define the same element of SL(3, R). Call 
this element & ( q 5 ) .  

Next we note that h: satisfies the equation 

L(4l O 4 2 )  = L X ( q 5 2 ) ~ * ~ , d q 5 1 ) .  (9) 
This follows from the chain rule, h,,(q510&) = h, , (q52)h~~, t~(q51) ,  and the fact that 
q52(xt) is a path in R3 from infinity to q52(x). In particular, 6, restricted to X, is a 
homomorphism. 

We next describe an inducing construction which defines the representation. First 
we introduce the fibre space 9 = A x SL(3, R) with the canonical projection p : 9 + A. 
The action q5* of the diffeomorphism q5 on A lifts to 9 as follows: 

(10) d*(& M )  = ( 6 d ( x ) ,  [ 6 x ( q 5 ) 1 - 1 M h  - 
where M E  SL(3, R). This action satisfies the group law &?&? = ( ~ $ ~ o q 5 ~ ) * .  

Consider a continuous unitary representation n of SL(3, R) in a Hilbert space 
Al. The class of such representations has been described by Sijacki (1975). Let be 
the Hilbert space of functions 9 on 9, with values in A, satisfying the following: (1) 
$ is measurable with respect to the product measure = CL x v, where CL is the give! 
cylindrical measure concentrated on A l ,  and v is Haar measure on SL(3, R); (2) v’ 
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satisfies the symmetry condition 

+(a,, M N )  = rI(N-l)+(Sx, M ) ,  (11) 

for all M,  N E S L ( ~ , R ) ,  so that the value of the inner product in A, 
M ) ,  @ 2 ( S x ,  M ) ) A ( ,  depends only on x and is independent of M ;  (3) $ is square 

integrable with respect to p ; i.e. I d p  (q, @)& < 00. 

In %, a representation of Y A X  is constructed as follows. Define p+ on A1 by 
p+(X) = p(c$*X) for X a measurable subset of A l .  Then 

.- 

1% (~)@I(s,, M )  = eif'"'Sr(s,, M )  (12) 

and 

where dpLd/dp is the Radon-Nikodym derivative. Defining *(ax) = +(a,, E ) ,  where 
E is the identity element in SL(3, R), we have 

Thus we have obtained the Gel'fand-Vilenkin form of the representation, in which 
the cocycle is given by x, (8,)  = n(h: (4 I), with * €9; (A, A%). 

Now let us look at the infinitesimal generators of such a representation. First 
suppose that rI is actually a representation of SL(3, R) in JU. Let Jo(g) be the operator 
(2i)-'(g * V + V . g )  acting on the spatial coordinates of *E%, where P(S,) is now 
considered as a square-integrable function of x taking values in 4. Let Z-, Eo, 2, 
be the generators of SO(3) considered as a subgroup of SL(3, R), and T-2, T-l ,  To, 
T1, T2 be the quadrupole operators. These generators are defined by Sijacki (1975) 
in a spherical basis as follows: 

0 0  0 -i 0 0 0 -1 
(15) 

-1 i 0 0 0  1 i  

1 0  0 0 0 ri i rl 0 
To=-idZ(O 1 0 1, T.l=[ 0 0 :I, T.2= [ T i  -i 01, (16) 

0 0 -2 Ti 1 0 0  

and satisfy the commutation relations 
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where 

G2(g) = G-*(g) = -$[&g’ - 328’ + i(alg2 + a2g1)l, 

and where summation over CL is understood. 
In a unitary representation of SL(3, R), Ex, Xy and Xz are represented by self-adjoint 

operators in A, and the T,, satisfy TE =(-1)”T-,,. In (18), each term is a tensor 
product of an operator on spatial coordinates with an operator in A. Now p ( f )  and 
J(g) define a representation of the algebra in (1)-(3), as can be verified by a straightfor- 
ward computation. For a representation of the covering group SL(3, R), equation 
(18) continues to hold, but the operators Z now represent generators of SU(2), the 
maximal compact subgroup of SL(3, R). 

In representations of Y A X  previously described (Goldin et a1 1981) we map 
X6= + Iw’ by q5 + det $,,,(I) and consider representations of Rc given by r + e’*’”‘ for 
fixed A .  Thus we obtain a unitary representation of Xax by the map q5+  
exp[iA In det f,,,(x)], which induces a representation of 9’ A X. In this representation, 
,y4 (6,)  = exp[iA In det fa (x)] and J(g  ) = Jo(g) + Ap (V * g) .  The above two classes of 
representations are easily combined by taking a new cocycle xS (6,) to be the product 
of the preceding two. This is possible because we can define a homomorphism from 
the little group Xax to GL(3, R), where GL(3, R) is the product of R’ with SL(3, R). 
Thus we have in general: 

J (s ) = J& ) + A p  (V * g ) + f (V x g ) * Z + $G-, (s ) T,. (20) 
Next let us consider the case of the N-particle orbit. The little group XF for 

F = X E l  6 ,  contains those diffeomorphisms q5 which permute the points (xl, . . . , xN); 
i.e. for which the set {q5(xl), . . . , q5(xN)} equals the set {xl,. . . , XN}. Suppose that 
f$(x,) = X k ;  then the Jacobian matrix f+(x,) defines-a linear mapping from TXJ(R3) to 
T,,(R3), where T,(R3) denotes the tangent space to R3 at x. The tangent space to the 
orbit AN at F, denoted by T F ( A ~ ) ,  is a 3N-dimensional space which as a vector space 
is the direct sum of the T,,(R3). Now for any q5 i i  the little group XF, there is a unique 
linear transformation defined by [det from TF(AN)  to itself, whose restriction 
to TXJ(R3) is Tx,(R3),  regarding Tx,(Iw3) and TXk(R3) as subspaces of TF(AN). The set of 
all such transformations forms a group L, namely the subgroup of SL(3N, R) which 
acts on R3N ,so as to preserve the given family of three-dimensional subspaces. 
Furthermore the map defined above is a homomorphism hF from X F  to L. 

Now SL(3, R ) N  is a normal subgroup of L, consisting of those transformations of 
Iw3N preserving the individual subspaces; and the quotient group L/SL(3, R)N is 
isomorphic to the symmetric group S N .  We can define an action of elements of S N  
on SL(3, R)”, but this presupposes a choice of corresponding bases in T,,(R3) for 
i = 1, . . . , N, and there is no canonical way to make such a choice. Assuming a choice 
of bases, L may be written as the semi-direct product SL(3, Iw)N A SN, and we can apply 
the usual Mackey theory for locally compact groups to consider its representations 
as extensions of representations of SL(3, R)N. Then, from each representation of L, 
a representation of Y A X can be induced. 

and let n, be a unitary representation of SL(3, R) 
acting in the Hilbert space Aj, fori = 1, . . . , N. A unitary representation Il of SL(3, R)N 

Let (MI, . . . , MN) E SL(3, 
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is given by II(M1, . . . , MN) = IIl(M1)O. . .OIIN(MN), acting in the Hilbert space 

Suppose the representations nj are all the same. Then, in the representation II, 
the little group in SN of the element (MI, . . . , MN) is the full group SN itself. Thus 
any representation of SN induces a representation of L. The measure for this rep- 
resentation is concentrated on an orbit which may be thought of as describing N 
indistinguishable particles, while the ‘internal symmetry’ of each particle is described 
by the same representation IIi of SL(3, R). The choice of representation of SN describes 
the particle statistics as has been previously explained (Goldin et a1 1980). 

At the other extreme, suppose the representations IIi are all distinct. Then the 
little group in SN of the element (MI, . . . , MN) in the representation II is just { e }  in 
S N .  In this case, the induced representation of L is unique. Each particle has a distinct 
‘internal symmetry’ described by the IIj. Thus the particles are distinguishable, with 
no new representations arising from SN to characterise exchange symmetry. 

A SN, and the 
above remarks apply. 

@: 1Jblj. 

Similarly we can define a homomorphism from XF to SL(3, 

3. Conclusions 

This paper continues the study of induced representations of the group of diffeomorph- 
isms arising in quantum theory. In earlier work, we considered representations of the 
little group for the N-particle orbit which factor through SN, and we obtained induced 
representations in the Hilbert space of wavefunctions on the covering space of the 
orbit satisfying a (Bose or Fermi) symmetry condition. Those representations utilised 
information only about the values of diffeomorphisms at N points. We have seen 
that a larger family of representations is obtained by including more of the structure 
of the diffeomorphisms. By considering representations of the same little group which 
factor through SL(3, R)N A SN, we can include information about the Jacobian matrices 
of the diffeomorphisms at N points in the representation. Moving from SL(3, R) to 
SL(3, R), information about the Jacobian matrices on paths extending to infinity is 
also included. The induced representations in these cases act in the space of wavefunc- 
tions on a fibre bundle over the orbit. Now the fibre is the continuous group SL(3, R) 
or SL(3, R) or, more generally, SL(3, R)N A SN, rather than the discrete group S N  
considered previously. 

A key role in the inducing construction is played by the lifting of the action q5* 
of a diffeomorphism from the orbit to the fibre bundle over the orbit. For the case 
at hand, we have explicitly constructed a lifting with the appropriate properties. This 
example strongly suggests further generalisation of the inducing construction for 
non-locally compact groups described earlier (Goldin et a1 1980), from the case where 
the representation of the little group factors through the fundamental group of an 
orbit, to the case where the representation of the little group factors through any 
locally compact group. 

In summary, when the Gel’fand-Vilenkin measure is concentrated on a one-particle 
orbit, we have recovered in the induced representation formalism the class of rep- 
resentations obtained by Borisov (1979), and we have extended the class to representa- 
tions based on SL(3, R). We have also obtained induced representations for the case 
when the Gel’fand-Vilenkin measure is concentrated on an N-particle orbit, finding 
a natural unification of Borisov’s representations with those previously obtained to 
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describe particle statistics. Thus, the induced representation formalism provides a 
useful approach to studying representations of the non-locally compact group 9’ AX. 

In closing, we observe that further classes of representations of the diffeomorphism 
group can be obtained by considering homomorphisms which depend on higher 
derivatives of the diffeomorphisms. 
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